The 22nd IIR International Congress or Refrigeration – Beijing, China

CO₂ Heat Pump System for Combined Heating and Cooling of Non-Residential Buildings

Jørn Stene^(a,b), Arne Jakobsen^(a), Trond Andresen^(b), T. Skiple^(a), P. Nekså^(a)

(a) SINTEF Energy Research (b) The Norwegian University of Science and Technology, NTNU

NTNU

Working Fluids in Heat Pumps

Non-Residential Applications – $V_{suction}$ at -5/55°C, η_{is} =1,0, λ =1.0

R407C	GWP = 1700	Non-flammable	Non-toxic
	t _{max} ≈ 50-55°C	Vsuction = 100%	
R134a	GWP = 1400	Non-flammable	Non-toxic
	$t_{\text{max}} \approx 70^{\circ}C$	Vsuction = 150%	
R717	GWP = 0	~Non-flammable	Toxic
	t _{max} ≈ 50/70°C	Vsuction = 80%	
R290	GWP = 3	Flammable	Non-toxic
	$t_{\text{max}} pprox 60^{\circ}C$	Vsuction = 110%	
R744	GWP = 1 (0)	Non-flammable	Non-toxic
	t _{max} ≈ 90°C	Vsuction = 15%	
NTNU	22nd IIR Internation	al Congress of Refrigeration	

CO₂ Heat Pump Energy Efficiency

Main Factors that Determine the Coefficient of Performance (COP)

- Heat source temperature, t_s
- Overall isentropic efficiency of the compressor, η_{is}
- Mean temperature during heat rejection, t_m
 - High-side pressure
 - CO₂ outlet temperature from the gas cooler, t_{C-out}
- Possible recovery of expansion energy
 - Ejector
 - Expander

SINTEF

CO₂ Heat Pumps in Non-Res. Buildings

Serial Connection of Heat Loads with Diminishing Temp. Level

22nd IIR International Congress of Refrigeration

SINTEF

Maximum COP vs. CO₂ Outlet Temperature

Single-Stage Compression, $t_0 = -5^{\circ}C$, $t_{SH} = 5 K$, $\eta_{is} = 75\%$, $Q_{HL} = 10\%$

NTNU

22nd IIR International Congress of Refrigeration

Specific Energy Demands in Buildings

Demands Based on the New Norwegian Building Code – 2007

NTNU

Heating System – Return Temperature

EXAMPLE – New Office Building, Design Conditions

Heating System – Return Temperature

Example – Office Building, Design and Off-Design Conditions

Simultaneousness of Heating Demands

Heat Loads – Space Heating and Heating of Ventilation Air

22nd IIR International Congress of Refrigeration

Focus on Low Return Temperature

Principle Illustration of Different Control Curves

NTNU

Example – SPF for CO₂ and R134a Systems

Heating and Cooling of a 7.000 m² Office Building, Oslo Climate

- Ambient air as heat source and heat sink indirect system
- Operation in heating mode or cooling mode
- Compressor swept volume determined by the cooling demand
- Serial connection of radiators and ventilation heater batteries

Design load – space heating / heating of ventilation air	250 kW	300 kW
Design load – space cooling	400 kW	
	CO ₂	R134a
Overall isentropic efficiency, compressor	75%	70%
LMTD – evaporator (constant)	8 K	8 K
Temperature approach – condenser/gas cooler (constant)	2 K	2 K
Efficiency – peak load unit (electro boiler)	100%	100%

NTNU

22nd IIR International Congress of Refrigeration

SINTEF

Calculated SPF_H – CO₂ and R134a System

Varying Supply/Return Temperatures in the Heat Distribution Syst.

Supply/Return Temperatures at Design Conditions, DOT [°C]

Calculated $SPF_T - CO_2$ and R134a System

Varying Supply/Return Temperatures in the Distribution Systems

Supply/Return Temperatures at Design Conditions, DOT [°C]

NTNU

22nd IIR International Congress of Refrigeration

Prototype CO₂ Heat Pump System

Heating and Cooling of an Office Building

Project participants (2007-2008)

- Builder Teknotherm AS http://www.teknotherm.no/
- Project partner The Directorate of Public Construction and Property (*Statsbygg*)
- Project partner The Norwegian Defence Estates Agency (Forsvarsbygg)
- Funding The Norwegian Research Council (NFR)
- Heating capacity approx. 75 to 100 kW

Heat source – energy wells in bedrock or ambient air

Prototype CO₂ Heat Pump System

- Bivalent heat pump system with peak load unit (boilers)
- CO₂ heat pump unit
 - Single-stage unit
 - Suction gas heat exchanger (SGHX) and low-pressure receiver system (LPR)
 - Single gas cooler or two gas coolers in parallel

Components

- Compressor reciprocating, inverter controlled
- Evaporator PHE (64 bar) or tube-in-fin air cooler
- Gas cooler PHE (140 bar) or tube-in-tube heat exchanger
- Other components commercially available

Prototype CO₂ Heat Pump System

22nd IIR International Congress of Refrigeration

DNTNU

Conclusions – Further Work

- A single-stage CO₂ heat pump system can achieve the same or higher SPF than state-of-the-art HFC systems in office buildings
- CO₂ heat pumps can meet high-temperature heating demands
- Critical factors wrt. low return temperature and achievable SPF
 - Heat loads for space heating vs. heating of ventilation air
 - Operational time of the ventilation system
 - Design and operation of the hydronic heat distribution system

Design, install and monitor a prototype CO₂ heat pump system

■ 75 to 100 kW single-stage unit in an office building

SINTER

NTNU

Thank you for your attention!

More information available at

